skip to main content


Search for: All records

Creators/Authors contains: "Xu, Wu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10–90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease. These relationships were stronger in marine than in terrestrial and freshwater realms. However, in terrestrial regions, the directional changes in occupancy were less extreme in protected areas. Our findings provide evidence for systematic decreases in occupancy of small-ranged species, and that habitat protection could mitigate these losses in the face of environmental change. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Quaternary climate change reduced and homogenized angiosperm tree diversity across large landscapes worldwide. 
    more » « less
  3. Safeguarding Earth’s tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species’ range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species’ range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity. 
    more » « less
  4. Abstract

    The practical application of lithium (Li) metal anode (LMA) is still hindered by non‐uniformity of solid electrolyte interphase (SEI), formation of “dead” Li, and continuous consumption of electrolyte although LMA has an ultrahigh theoretical specific capacity and a very low electrochemical redox potential. Herein, a facile protection strategy is reported for LMA using a double layer (DL) coating that consists of a polyethylene oxide (PEO)‐based bottom layer that is highly stable with LMA and promotes uniform ion flux, and a cross‐linked polymer‐based top layer that prevents solvation of PEO layer in electrolytes. Li deposited on DL‐coated Li (DL@Li) exhibits a smoother surface and much larger size than that deposited on bare Li. The LiF/Li2O enriched SEI layer generated by the salt decomposition on top of DL@Li further suppresses the side reactions between Li and electrolyte. Driven by the abovementioned advantageous features, the DL@Li||LiNi0.6Mn0.2Co0.2O2cells demonstrate capacity retention of 92.4% after 220 cycles at a current density of 2.1 mA cm–2(C/2 rate) and stability at a high charging current density of 6.9 mA cm–2(1.5 C rate). These results indicate that the DL protection is promising to overcome the rate limitation of LMAs and high energy‐density Li metal batteries.

     
    more » « less